

Green Planet Architecture

A METHODOLOGY FOR SELF-SUSTAINABLE DISTRIBUTED RENEWABLE ENERGY ECOSYSTEMS

Nikita Saxena

Biomedical Engineering, Tufts University, Medford, MA

Anna Thomas

Chemical Engineering, Georgia Institute of Technology, Atlanta, GA

November 16, 2011

2011 International Workshop on Environment and Alternative Energy European Space Agency Technical Center (ESTEC)

Outline

- Background
- NASA Green Lab
- Geospatial Intelligence
- Potential Biomass
 Resources
- Community Ecological Cycles
- Conclusions

Background

- Where we are now:
 - Dependency on four major crops: wheat, maize, rice, and soybeans
 - Food and feed = requires energy!
 - Climatic change
 - "Drying up" of freshwater resources
 - Brackish water remediation

Background

- Addressing the issues:
 - Use current and emerging technologies to asses the state of the ecosystem
 - Create global distribution networks
 - Climatic adaptive biomass sources

Iterative Experiments Modeling: Efficient NASA-unique approach to aviation biofuels

Example: Optimizing microalgae/cyanobacterial biofuel properties

Integrated Biology/Transport Models

Micro models

Basic biology:

 Metabolism, energy conversion, growth, exchange /environment

Micro-macro model

Macro model

Experimental Testbeds

Coupling to large-scale transports

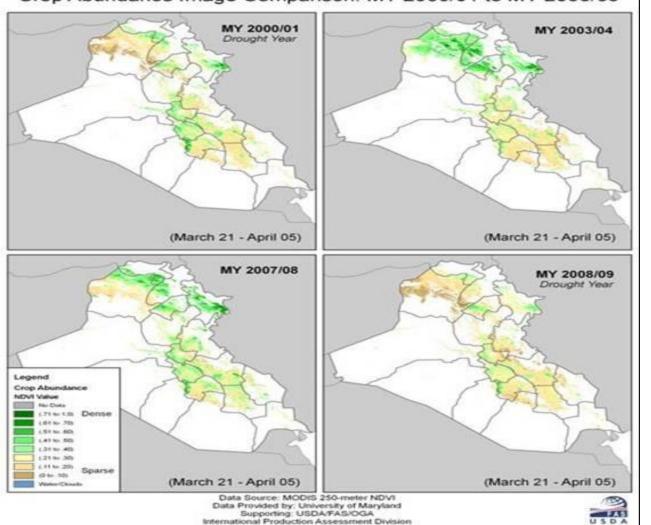
Distribution function

Large scale transport processes:

- Overall geometry, light, flow, nutrients
- Process optimization

Integrated Experimental Facility

- Measure model input parameters
- Iteratively validate model designs
- Provide independent data for halophyte production



Geospatial Intelligence

MODerate-resolution
Imaging Spectroradiometer
(MODIS) Normalized
Difference Vegetation
Index (NDVI) chart
displaying crop abundance
over time in Ninewa
Province, Iraq.

NASA Earth Science Decadal Survey Studies

- Space-observation systems
 - Gather information the dynamics of the climate and ecosystem
 - LEO and SSO orbits
 - Various Surveillance Programs and applications to Green Planet Architecture

- High-performance Computing (HPC)
 - Processing of large data sets

Potential Biomass Resources

1. Seashore Mallow

perennial that grows on coastal marshlands or brackish lakes

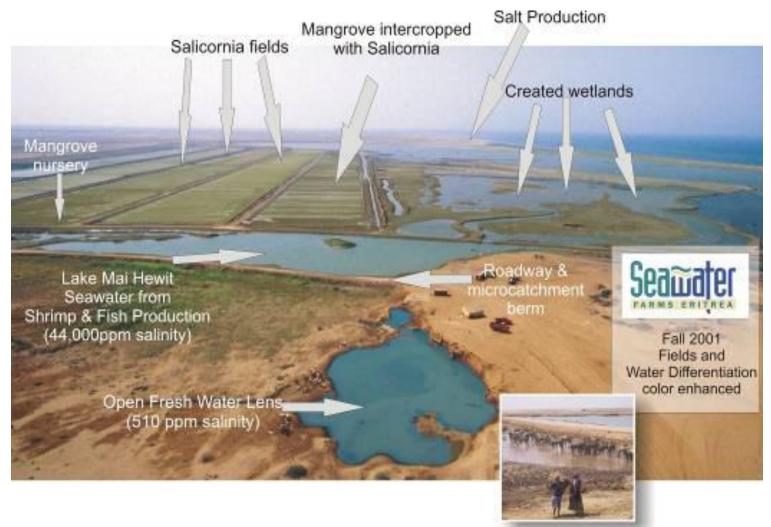
2. Salicornia and Mangroves

been studied for food, feed, fuel and salt retention

3. Halophyte trees and shrubs

energy and carbon credit resources

4. Algae Systems


- too expensive to be considered as a fuel source only
- very productive and profitable as a niche market source

5. Castor Beans

- crop for semi-arid to arid lands
- not a true halophyte, climatic adaptation is currently being tested
- castor bean oils have been processed to SPK-HEFA (HRJ) aviation fuels

Large community ecological cycles

As envisioned by Dr. Carl Hodges, Seawater Foundation

Conclusions

NASA Green Lab

New and integrative ways to view future green planet alternatives

Geospatial Intelligence

 Forming a broader understanding of the Earth to formulate new ways to maintain and improve its health and serve our energy needs

Potential Biomass Resources

Finding viable alternatives to meet future needs

Community Ecological Cycles

 Optimizing resources, expansion and combination of Green Lab and other projects

Acknowledgements

- Robert C. Hendricks
- Collaborators at NASA Glenn Research Center
- Shawana Johnson, Global Marketing Insights
- John Venners, BioEcoTek
- Undergraduate Student Research Program and Aeronautics Scholarship Program administrators/coordinators
- ESTEC
- NASA HQ

Thank you **Questions?**

